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TOPICS ASSOCIATED WITH NONLINEAR EVOLUTION EQUATIONS

AND INVERSE SCATTERING IN MULTIDIMENSIONS

Mark J. Ablowitz

Clarkson University
Department of Mathematics and Computer Science

Potsdam, New York 13676 U.S.A.

Abstract

In recent years the basic structure required to implement the

inverse scattering transform in 1+1 and 2+1 dimensions has been

clarified and extended. Aspects involved with fully multidimensional

problems have also been treated. In particular the inverse scattering

associated with various multidimensional operators and generalizations

of the Sine-Gordon and self-dual Yang-Mills equations have been studied.

A review of some of this work will be discussed in this review.
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The Inverse Scattering Transform (I.S.T.) is a method to solve

certain nonlinear evolution equations. There has beer' wide ranging

interest in this method for many reasons. A review of earlier work can

be found in [1].<A surprisingly large number of physically interesting

nonlinear equations can be solved via IST; there are many applications in

physics including: surface waves, internal waves, lattice dynamics, plasma

physics, nonlinear optics, particle physics and relativity. Mathematically

speaking the field is also quite rich, with nontrivial results in the

areas of analysis, group theory, algebra, differential and algebraic

geometry being used by various researchers. Fooof viev IST

allows us to solve the Cauchy problem for these nonlinear systems. -H '- f

,9-sha&- concentrateion questions in infinite space. All of the nonlinear

equations discussed below arise as the compatibility condition of certain

linear equations, one of which is identified as a scattering (direct and

inverse scattering is required) problem and the other(s) serves to fix

the time evolution of the scattering data. -

In one spatial dimension the prototype problem is the (KdV)

equation

ut + 6uux * uxxx =0. (1)

The KdV equation is compatible with 100

V xx + u(x,t)v A V (2)

*vt  (Y+ux )v - (4x+2u)v '3) C '

i.e. vxxt - V txx implies (1). Equation (2) is the time independent 0

Schrodinger scattering problem, x the eigenvalue (Y const. in (3)). The

solution of (1) on the line: --<x<- for initial values u(x,t-O)

vanishing sufficiently rapidly at infinity is obtained by studying the iris

VD 
s 
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associated direct and inverse Scattering problem of (2) and using (3)

to fix the time evolution of the scattering data. It turns out that

the inverse problem amounts to solving a matrix Riemann-Hilbert

boundary value problem (RHaVP) whose jump discontinuity depends

explicitly on the scattering data. Calling A--k 2 v(x.k)-u(xk)ehikx

the RHSVP takes the following form.

(U,-i.)(x.t.k) - w.(x.tc'(k)) V(xt.k) on
ut-1o 1kl- (4)

where

V(x,t,k) z r(k,t) e2ikx , c(k) a -k. E-(k:k g), and u. are the

limiting boundary values,as [mk.O±,of meromorphic functions in the

upper (+) lower (-) half plane. (4) may be converted into a linear

integral equation by taking a minus projection and the potential is

reconstructed via

u(xt) f - - u.(k,x,t,-k) V(x,t,k)dk (5)
ax c

where the contour is taken above all poles of r(k.t); of which there

is at most a finite number, k j iv., -O 0 j z l..N. The

scattering data: the reflection coefficient, r(k.t) evolves simply

in time r(k.t) - r(k.O) e8ik2 t (6)

The above scheme may be extended so as to solve a surprisingly

large number of interesting nonlinear evolution equations. There are

two scattering problems of particular interest in one dimension:

(i) Scalar scattering problems:

n nZn U i u (x) An V ,

7X jZ2 u dx"*47

v(x.k), u. '

(ii) First ordvr systems - generalized AKNS

dv k J v + q v
dx

v(x,k),q(x) c (NxN, J z diag 
(Jl,..jn)

Ji Ji 0 i J #

=0.

Al
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Via an appropriate transformation the inverse problem associated with

(i), (ii) can be expressed as a matrix RHBVP of the form (4). The

potentials u ,q can be shown to satisfy nonlinear evolution equations

by appending to (i) and (ii), suitable linear time evolution equations.

One then finds that the scattering data V(xt,k) evolves simply in

time. Well known solvabte nonlinear equations include the Boussinesq,

modified KdV, sine-Gordon, nonlinear Schrodinger, and three wave in-

teraction equations. The reader may wish to consult for example [2a-e]

for a detailed discussion of some of this material.

It is most significant that these concepts can be generalized to

2 spatial plus one time dimension. Here the prototype equation is

the Kadomtsev-Petviashvili (K-P) equation:

• (ut * 6uu x + UxXX) x a -3o2Uyy (7)

which is the compatibility equation between the following linear prob-

I ems:

v y +v * u(x.y.t)v 0 (8)
y xx

vt + 4v MX + 6uvx + 3(ux- . ydx')v +yv = 0 (9)

(Y = const.). we shall consider the question of solving (7) for

u(xyO) decaying sufficiently rapidly in the plane r
2 = x2 y 2

Physically speaking, both cases o2 . -1 (KPI) a2 = 1 (KPII) are of

interest. Whereas KPI can be related to a RHBVP of a certain type

(nonlocal; see ref. 33) KP!I turns out to require new ideas. Letting

v = ,(x,y,k)e
ikx  +  k2y/o

0 ZCP + i. 1' 0. Then there exist functions bounded for all

xy satisfying 1i as Ik I - -,. However such a function turns out

to be nowhere analytic in k, rather it depends nontrivially on both

the real and imaginery parts of k(kakR + ikI). u = u(x,y,kROkI).

In fact u satisfies a generalization of a RHBVP - namely a

(OSAR) problem where u satisfies,
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jk- (x,(0Vok ) V(x,y,kR kI) (

where 1-) and V has the structurea[r I 1-R kj ielx,y,kR,kiCO)

V(x,y,kR,kI) sgn(k)e T(kR,kI)2, l RI

O(x,y,kR9kiO) (x + 2y 1 )(0 - kR) s -2(x + 2y R)k0
OR0

-kR "74 1 9 ko a kR + (11)

(10-11) may be converted into a linear integral equation by employing

the generalized Cauchy formula, T(kRIkI) is viewed as the "nonphysi-

cal" data, (i.e. inverse scattering data or inverse data) and the

potential is reconstructed via

u(x,y) a L, I JJ u(x'y, 0 k*)V(xykRkj)dkRdk V (12)

The basic ideas used in order to derive these equations is

as follows. We convert the equation for u = u(x,y,k):

ou y + L + 2iku x  u(x,y)4 = 0 (13)

into an integral equation

u(x,yk) 1 1 + G(uo) (14)

where G(f) x G-f : fG(x-x',y-y',k) f(x',y')dx'dy', (15)

the Green's function kernel being givenby (k-kR+ik,):

1 ei(cx+yy)G(xyk Ik1) 2 ddyRx k(2f) (ian-( -2kt)

• sqn(y) {d(eixc + 6({2k)y/0

2TIO

0 (-yR(C2+2Cko))dC (16)



where k skR z k and ( Cx) z IxIO, Ox<Or Cahr kok R I

The 3 derivative of the Green's function is especially simple,

= sgn(kn)ia(x,y,kR,k1 ) (17)(x,ykR,k) 2 R

when
1(*i- i and

2 R

k
a(x,y,kR,k I) -- 2(x 2y.RR)k O.

Taking the ; derivative of (14)

=-~~~ rrlr-(x-x',yy ', k k ) u ( x ' ,y ' ) u ( x ' , y ' , kR , ( xd
Axy'Rk1) jilak )d Idy'

+ G(x-x',y-y ,kR~kU(x',y', - (x ,y ,kR,kl)dX'dy (18)

and using (17) shows that
au sgn(k0 ) T(kR,kl) w(x,y,kR,kI) (19)

where T(kR,k I) = ffe'is(x'y'kR'kI)u(x,y)u(x,y,kR,kI)dxdy and

w(xy,kRkI) satisfies:

w(x,y,kR,kI) = el YROkI + RIkI

u(x',y')w(x',y',kRkI)dx'dy'. (20)

Multiplying (20) by e' ykR'k£) and employing the following

symmetry condition on the Green's function

I)G(x,y~kR,kt) I

• G(x,yqo,kI) (21)

where C0 -ko -ik1, yields

w(xygkR,kl )  e eii(xqy,kR~k 1) LA(xYCo,kl )  (22)

0'N
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whereupon (10-11) follow. The eigenfunction Lu is recovered witn roi

generalized Cauchy formula

o~x~~k Rki) 1 +(x~y~k4,kii dkgdk. 23
~(x~y~kR~kl 1 J k-k' ~3

noting that using (10-11), (23) becomes a linear integral equation

for u. rhe potential u(x,y) is recovered by taking k.- in (13) or

(14) and (23).

For the K-P the evolution of the data obeys (y 4ik 3 in (9)

aT 2k 24 (4
at ,(8ik 0)(6k0 U0. 3k )T (4

ak
where k0 a kR + -D, k -kR + ik.

Special cases include a Z aR i,

(a) KP 11 ; a -1: OR :I'-11  = 0

at 8 lk R (3k1 k R )T (25)

(b) KIP1  i: 7R-O-. a, 1, k = 1a

E 8(k 4kI)(k 2+2k k +4k 2)T (6

These formulae allow usin principle to solve the Cauchy problem

for K-P and in particular the limit (ii) discussed above allows

us to give an alternative solution for KIPI via aand not via a

nonlocal RHBVP.

Similar ideas apply to higher order scalar problems

2L n n-j
a- v + U 3 -2 =ay axn j-2 a -

where: v,* u c C and to first order systems

(iv) + *.V q(X'y)v 20
NxN 1 IN thq 1  0

where: v,qt( ,Jzdiag(J ,....J ), ji#iwihq 0

NNZ~~nM&W 63w1IIU O



Interested readers may consult refernce 4a, and review 4b %r

more details.

The notion of (0 extends to higher dimensional scattering and in-
verse scattering problems. However as we shall mention, despite the
fact that the inverse scattering problem is essentially tractable

there does not appear to be any local noninear evolution equations in

dimensions greater than 2 + I associated with multidimensional gener-

alizations of (iii) or (iv).

Our prototype scattering problem will be

ov + Av + u(xy)v - 0
n a2

2 X C P n  y C R (27)

Lettng V • u(x,y,k)eik x + k2ylO

k x kR + kl k c (n

kx - X k x., o a OR  + io I .
1

Then there exist functions u bounded for all x, y satisfying u-1, as

Ik i- -, j 1,... ,n. When c. # 0 u turns out to be nonanalytic in

each of the variables k, i.e. u x u(x,ykR1... kR k 'k....kn ) and

satisfies a 5 problem linear in u, in each of the variables kj;

i.e. we shall show that u satisfies an equation of the form,

= f(u); = -,.. ,n (28)

where T. is an appropriate linear integral operator.

The basic idea in order to derive (28) follows a similar

format to the two dimensional case described earlier. From the

definition of u(x,y,k) below (27) we see that it satisfies

* + i 2ik.Vw - u(xy) 0. (29)
-y



We convert to an integral equation

U = I + G(u ') (30)

where the Green's function kernel is given by

G(x~yk ~k ) - I e Uioy-C '-2k.

R1 (w n~ io- ( 2 _ k

Taking the derivative of (30)

_ j..a UU + G (u -), (33)

and using

AG (x,y,kR,k  = 1 (e i"( xykRk )

•& j- k Rj )6(o())d& (34)

where S(x,y,kR,ki{) = (x 2y R).('kR)

+ -k )2 _ (kR k I)2 (35)

shows that

1 T(kR,k )(Cj-kRj)S(o( ))

k. () IORIJ

w(x~y~kR~kI C)d (  (36)

ps

).
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where
T(k R tk , ) I Z e [ 16(xy kRtk u(x,y) ,'.x,y,k Rtk 1)dxdy 3 7,

and w satisfies
iB(x,y,kR k (38)w(x,y,kR,k , A e kRt I + G(uw).

Multiplying (37) by e-is and using the symmetry condition

ei(xty'kR'kt'P) G(x,y,kR,kI) = G(x,y,&,k1 ) (39)

yields
,~t~R~I'' e-i(x,ytkR~k,k )~ g~ k) (40)w(x~y,kR,kl,(, • I'~kk, u(x,y,C, k1) (0

and hence (36) gives

ar = T.(,) f(n T T  T(kR,klc)(.-kRj)

6(P(&)) eiB( xy'kR'kI')(x,y,,k)d. (41)

We see that T is an integral operator which depends on a

scalar scattering function T = l(kR,ki,&)& being effectively
(n-1) integration parameters (due to the delta function in (41)
in the nonlocal operator T.).

One can use a generalized Cauchy formula such as (23)in order to obtain a linear integral equation to reconstruct u.

However due to the redundancy of the data discussed below, we find
that an alternative method is more useful. The inverse problem is
redundant, i.e. we are given T(kRkI,) (3n-i parameters) and we
must reconstruct a local potential u(x,y) (n+1 parameters). A
serious issue is how to characterize admissible inverse data T,
i.e. data that really arises from a local potential (small generic
changes in T(kR,ki,() cannot be expected to arise from a local
potential u(x,y)). Insight into this question is obtained by
noting that T must satisfy a nonlinear constraint, one which is

obtained by requiring 3 L/3ki = ad/kjaki (i # j). the form
1tn or
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of this constraint is given by

) ij(T) N NijE[7]

whereci j is a linear operator and Nij a nonlinear (quadratic)

nonlocal operator. These operators are given by

N( k= ( (j-j) -) - ((i-ki4)(- )(3)
j 1) 1 3L

13 J -jjRi CE1 3 E-T R4

• ( ( ') T (k RI ki, ) T(c',ki,&)d&'. (44)

There is, in fact, an explicit transformation of variables

(kR,kz, ) - (XwoW) C

which simplifies (42). Namely,

n w1  -: 1WlkR1 = ji2 W jXRj -2 2w2

Wk 2 1 0W.j (J 1-2)kRj = "WiXRj 2 2w2  '

k n cTRwoW 1
kil "ji'2 Wjxlj 2w 2CWOW 1

k ij -= - 1 w j + 2w 2

n wk..wwI I  W 0 W11i 1 j2 IXRj + 2w'2

= -W XRj + - -2 w (j 12) (45)

2w"



transforms (42) into:

T- . N. (T)(Xwo,w) j=2,---n (46)

using the generalized Cauchy formula (23) we have

I (T] , .w 'o = (x~ w,w )o - i O ij (T)('X ,wiw0) dx dx

X u(w,w0 ) (47)

where

U(ww) , , e,...x.. u(xy)dxdy (48)

We have used the fact that when w0  2k i.(-kR)/OR and w - -kR

are kept fixed, T(x,w,w0 ) u(w,wo) (The Fourier Transform of u(x,y))

for large xj(w,0O); this is the analogue of the Born approximation.

We expect that for suitably "small" u (i.e. no homogeneous

solutions to the relevant integral quations) if I is independent

of x,j and decays sufficiently fast for Jwjjw0 l., then
T(kR,ki,) is admissable. Moreover (47) gives a formula to

reconstruct the potential by quadratures. Limits to case
3 i and reductions to stationary potentials u(x,y) = u(x)

can be carried out. Oetails can be found in Ref. [5a,b]. It
should also be noted that in recent work Nachman and Lavine E5c]
have extended theaw ideas to situations where there are

homogeneous solutions to the relevant integral equations.

(42) also suggests why simple local

Zal.
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nonlinear evolution equations have not been associated with ejuation

(27). Namely in theprevious lower dimensional (2-1 and 1-1) oroblemns

the time evolution of the scattering data obeyed a particularly simple

equation, (e.g. LT . (kRk)T). However in this case Such a simple flow

will not be maintained - due to the nonlinear constraint (42).
These ideas can be generalized to first order systems:

(v)*o 0 EJ - - qv
jj

k IJ. P J ., k P I

with many similar results obtained 6a,b,c; though there are some

important differences as well: see ref. [6c]. Again the scattering

data satisfies a nonlinear constraint. In general, there is no

compatible local nonlinear evolution equation associated with (v).

However when certain restrictions are put on J then the constraint

equation becomes linear and the so-called N wave interaction equations

are compatible with the system (v). Nachman and Ablowitz [6a]

showed that at most, the system would be 3+1 dimensional, and Fokas(6b]

showed that indeed the system is reducible to 2+1 dimensions by a

transformation of independent variables (characteristic variables).

In [6c] Fokas studies the inverse scattering of (v).For a - i he

finds an equation similar to (42). However its integrated

form shows that in order for the potential to be reconstructed

one must solve a reduced system of equations of the form (v):

i.e. for N - 2. This is in contrast to the scalar problem where

reconstruction is via quadratures.

Beals and Coifman haven an alternative but similar formula-

tion [la,b] for multidimensional scalar problems.

There is an n-dimensional problem which also fits within

the framework of IST: The so-called generalized wave and generalized

sine-Gordon equation (GWE and GSGE). These equations arise in the

context of differential geometry and serve to extend the classical re-

sults of Bicklund for the sine-Gordon equation to n-dimensions (a].

The n-dimensional Bicklund transformation is given by:
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dX + XAtX = A - X8, ',9.

where
n

dX = .' dx
j-1 ;Xj j'

A ij - 8i zWaij dxj,

a 1 .. Ldx. I li.
i-- . --axd i  I < ij <n, (50)

and a • (aij c Rn n . Equations (49-50) reduce to the BUcklund trans-

formation for the generalized sine-Gordon equation (GSGE) when

Si(z) . (z2 + (24$i1 - 1))/2z. (51)

and for the generalized wave equation (GUE) when

Bi(z) • -(1-z 2 )/2z =) (z). (52)

The compatibility condition required for the existence of solu-
tions to these Backlund transformations results in a system of second-

order partial differential equations for an orthogonal n x n matrix

a - (a.j) in (49) which is a function of n independent variables

a = a(x1,x2, ... X The equation has the form

,,x. ~I 7X*:x

I ali "-)a
+ ~ La a IV3

k 0 ij alk k k

1I ai 1 aa Ii aalk

aXk Ij xj ak a axk axj 1, k distinct,

*ajk ;a. alk= i - i .i i , (53),"xk  a li x i

where I for the GSGE and t 0 for the GWF.
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We observe that when n - 2 and I (GSGE). the orthogonal

matrix a x aij. given by

Cos - u sin I u

a
\-sin u Cos u

for the function u - u(x,t) reduces the GSGE to the classical sine-

Gordon equation (K - -1),

utt u xx-Csin u O. (55)

On the other hand when n * 2 and K - 0, then with (54 ) the GWE reduces

to the wave equation (55). When n > 3 the generalization of the

wave equations discussed here is nonlinear.

The Ucklund transformations (49) described above are in fact

matrix Riccati equations. Linearizations of such a system can be

performed in a striaghtforward manner. Introducing the trans-

formation

xa u-"j 1, (56)

where U, V and n x n matrix functions of x1,..xn, the following 
linear

system is deduced:

(U) z A U (57)

with the components of A, 0 given by (50). Compatibility ensures that

the orthogonal matrix a a ai satisfies the GSGE with (51) and GWE

with (52). Alternatively, if we call

the following linear system of 2n o.d.e.'s are obtained:

Z = A,+ Cj, (59)
jX 3
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where Aj, C are 2n x 2n matrices with the block Structure

AJ ( (60)\: , Cj '

J

Here a., y. are n x n matrices having the following structure:

6 a

.3 - lj ,

(61)
aj ae.

where ej {e Iik is the unit matrix

eo i (62)
10 otherwise,

and in component form y takes the form

(v )k£ (l-6 kJ)- - k-l , " (1"6 )1 aL1  a (63)

Sk jakaxk I alt UL kj-

In (61) a is the orthogonal matrix In * SO(n) associated with the GWE

when 6 - A and with the GSGE when 6 - 7(Zt+ I/z), Au a(z - I/z). and
Y is the matrix (63): Rn - Mn(R), yj * yj - 0. Equations (53) arise

as the compatibility condition associated with (58). More explicitly,

for the GWE the scattering problem takes the form [o m (x,x)]

-21 = A + Cj (64)
ax.

with

Aj (65)

and C, given by (60,63).

For tP( GSG[ the scattering problein for . = ) takes the

0 e le~j a jw
(z) 1 (

+ A(Z) 0 ( (66
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(z), A(z). given above, or equivalently

'"O - Z , * ± ,

where o o
)--, u a diag( +, -1 . . -11. (68)

In (8] it is shown how these linear problems may be viewed as a direct
and inverse scattering problem for the GWE and GSGE. Namely the

direct and inverse problem may be solved for matrix potentials, de-

pending on the orthogonal matrix a, tending to the identity sufficient-

ly fast in certain "generic" directions. It should be noted that

* solving the n-dimensional GWE and GSGE reduces to the study of the

scattering and inverse scattering associated with a coupled system of

n one-dimensional o.d.e.'s. This is in marked contrast to other

attempts described earlier to isolate solvable (local) multidimensional

nonlinear evolution equation which are compatibilit) conditions of two

Lax-type operators, e.g.,

L qP*A, (69)

lp t V MP (70)

where L is a partial differential operator with the variable t enter-

ing only parametrically. Although as we have seen nonlinear evolution

equations in three independent variables can be associated with such

Lax pairs (e.g. the K-P, Davey-Stewartson, three wave interaction

equations, etc.) little progress via this route has been made in

more than three dimensions. As discussed earlier one has to overcome a

serious constraint inherent in the scattering/inverse scattering

theory for higher dimensional partial differential operators in

order to be able to isolate associated solvable nonlinear equations,

i.e. the scattering data generally satisfies a nonlinear equation

(eq. (42)). The analysis associated with the GWE and GSGE avoids

these difficulties since the GWE and GSGE problems are simply a

compatible set of nonlinear one-dimensional o.d.e.'s.

b
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The results in ref. [8] demonstrate that the initial value problem

iS posed with given data along lines and not on (n-i) dimensional

manifolds.

Similar ideas apply to certain n-dimensional extensions

of the so-called anti-self-dual Yang-Mills equations (SoYM)

[9]. In two complex variables the self-dual Yang Mills equations

take the form (see 10])

S ax a! ax2

where Q is a positive matrix valued function of (X1 ,x2)C
2.

Alternatively SOYM takes the form

A I  1 A 2 0 ( 7 2 )

a 1  x2

aA 3 [A1 ,A2 ] 0 (73)

ax 2  axl 21 0

where

A -1an (74)j axj

The SDYM may be obtained via the compatibility condition

of the following linear system

am amx--'z -- =-A 1 m
ax1  a;2  1(5

am am A
"X + z 1 A2m ,

2 X

multidimensional extensions may be obtained. For example,

consider the linear system

Om(x,z) A A.(x)m(x,z),j 1,"n (76)
zJ

O j Z (77)
z x, - -

and xn 1 a X j .( I j

b j _*



Compatibility (coninutativity) implies:

Do A. DJA + [A VA x 0 (721;
zJ z i ij

3A aA J (A A) 0 (79)
Ix. ax. '

s A 0.a80
j axj ~ laxi+

A Potential nl may be introduced as before: (81)

A -1 ani
jax 3

to obtain

a 3 n1 an n1an 0(2
Sj axj -al ax i n 0.(2

Clearly when n-2 this system reduces to the classical

SOYM equation.
Solutions to these equations may be constructed via

the 5 method. Define

O j (83)LJ zLJ
with

1 i ,x3 L2 3

We shall show that the integral equation

M(x~z) + 1 ~iI (TV)(x,6) d4-dZ (84)

.w -z
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satisfies (76). Operating on (84) with Oj yields,

__T I(L m)V + m(LJV)
Dim 2 -di-d * J (85)

where zL(mV)
20 f C -z d,-dC,

2 - 1 LJ(mV)dc-dt

2w 2

+ &2 m4-z d4-dZ. (86)

Putting (85), (86) together gives

D~~m z 1 (Dim)V + r(DJV) d- ~ (7DmaA+ f (-z d;.-d& ( 87 )

z 3 i I
where

A.(x) 2 - f [ Lj(mV)d-d sj I(mV)dc-d. (88)
,(x) j 2 I21Ti j j

We shall require V(x,z) to satisfy

2Jv • 0 (89)
z

in which case using (84) in (87) by writing

Aj I .(m r I V C (90)J - 2. -d1
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we find

- I ((Dam) - (X)m)V

(Dim C m 9
z A T i ;j

For V suitably chosen (84) has a unique solution in which case

Djm M *~ 0 . (92)z j

Thus A. A A. and solutions of the extended SOYM are obtained.

The condition (89) is satisfied if we take V(x,z) - V(u(x),Z),

with u.(X) 2 zx.i + S. x~~+ and V holomorphic in the u J, Then

j J ax i n
.1+1

2 !V'(u,'z)(z6., + S i Sj+JZ6 it 0 (93)

by virtue of s. ~J In ref. (9] other examples of

multidimensional extensions of SDYM and a rigorous derivation

of the foregoing is given.
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